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ABSTRACT

Steady-state equations are presented to describe

coolant mass and energy transfer within transpira-

tion nosetips. The energy model, which assumes

thermal equilibrium between the coolant and matrix,

is justified on the basis of pore size. Aniterative

computational technique is given which can be

applied to the finite-difference equivalents of the

steady-state equations, causing a relaxation in the

pressure and enthalpy fields to satisfy the boundary

conditions. To maintain stability, the calculations

must be damped. The final results show isothermal

approximations to be substantially in error for high-

and low-pressure reentry conditions.

NOMENCLATURE

A = Interfacial area between nodes, ft 2

= Specific heat, Btu/Ib m- °R

= Diameter, ft

= Energy flow into or out of a node, Btu/sec

= Energy flux defined by Equation (26), Btu/ftZ-sec

= Function defined by Equation (25)

= Conversion factor, 32. 17 Ibm-ft/Ibf-sec 2

= Fluid enthalpy, Btu/Ib m

= Heat-transfer coefficient, Btu/ft2-sec -°R

J = Conversion factor, 778 ft-lbf/Btu

VThis work was supported by McDonnell Douglas independent

research and development funds.

523

522-137 O - 73 - 35



K

k

L

M

rh

N

P

R

T

V

W

Y

Ol

p

F

Y

P

= Porous matrix permeability, ft2

= Conductivity, Btu/ft-sec -°R

= Length measurement in direction of mass flow, ft

= Mass flow into or out of a node, Ibm/Sec

= Effective fluid mass flux based on matrix cross

section, Ibm/ftZ-sec

= Number of pores per unit matrix cross section, ft-2

= Pressure, Ibf/ft 2

= Conduction heat flux, Btu/ftZ-sec

= Porous matrix

Equation (22),

= Temperature,

= Effective fluid

ft/sec

heat flow parameter defined by

Btu/sec- °R

oR

velocity based on matrix cross section,

= Porous matrix fluid flow parameter defined by

Equation (18), sec/ft

= Distance from outer surface of porous matrix, ft

= Porous matrix viscous pressure drop constant, ft "2

-1
= Porous matrix inertial pressure drop constant, ft

= Porous matrix tortuosity for heat conduction,

dim en sionle s s

= Porous matrix void fraction, dimensionless

= Fluid viscosity, lbm/ft-sec

= Fluid density, lbm/ft 3

= Elemental surface area normal vector, ft 2

Subscripts

e = Effective value

c = Value for coolant
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in = Into a node

o = Storage value

out = Out of a node

pore = Value for pore within the porous matrix

s = Value for porous matrix parent material

surf = Outer surface value

0, !,2,3,4, 5,6 = Nodal subscripts define d by Figure 5

INTRODUCTION

The design of a transpiration-cooled nosetip, represented
in the cross sectionin Figure 1, is predicated upon delivering

coolant to the nosetip surface at a rate sufficient to dissipate

thermal energy from aerodynamic heating. From this stand-
point, ideal coolant flux at the surface varies greatly with loca-

tion; it can be complicated by aerodynamic boundary-layer

transition and angle of attack. For reentry vehicle application,
it is desirable to minimize wastage of coolant, i.e., no excess

coolant flux should be delivered to an 7 portion of the nosetip
surface. However, this is difficult to accomplish in view of the

severe pressure gradient that can exist over the nosetip surface

at high stagnation pressures. The pressure gradient acting over
the surface is transmitted to the isotropic porous material of

the nosetip, and when superimposed on the internal radial pres-
sure field, it can cause significant bending of coolant stream-

lines between the inner and outer surfaces of the nosetip. To

define coolant distribution accurately at the outer surface,
three-dimensional porous flow calculations must be done

because of the surface pressure gradient, coupled with the

irregular shape of the nosetip inner surface and the effects of
angle of attack.

LITERAT URE REVIEW

The traditional approach to analyzing incompressible

steady flow through porous media has been to assume the proc-
ess is dominated by viscous effects and that effective fluid

velocity averaged over a typical cross section is proportional to

the pressure gradient and a material property called permeabil-
ity. The resulting relationship, Equation (1), is sometimes

referred to as the Darcy(1) equation.

_ d_.P_P : -P---v (1)
dL Kg c
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To better match experimental data, Green and Duwez (2)

modified the Darcy equation by adding terms to account for

inertial or nonviscous effects within the porous flow:

dP

-_-E
_ (_ + ppv)v

gc

(z)

where _ is the viscous pressure drop constant (the inverse of
the material permeability) and _ is the inertial pressure drop
constant of the material. In order to characterize a specific

porous material, both a and _ should be evaluated experimen-
tally, as they strongly depend on such factors as material

porosity and pore shape and size.

Equation (2) can be extended to multidimensional flow in
isotropic porous media provided the acceleration due to flow

curvature is neglected.

-VP : (3)

gc

Considering only viscous pressure drop, Schneider and

Maurer(3) utilized Equation (3) to obtain analytic solutions for

the flow of coolant through a hemispherical, transpiration-
cooled shell subjected to a Newtonian surface-pressure distribu-

tion. They found that with streamline curvature, there is a

tendency toward coolant starvation in the stagnation region, and
that one-dimensional calculations are inadequate.

In order to study other shapes besides concentric hemi-
spheres and to include inertial effects, Timmer and Dirling(4)

treated the axisymmetric porous nosetip flow problem by

approximating the quantity (_bt + _plvl) as a constant for the

porous region, thus reducing Equation (3) to Laplace's equation.

V 2 P : 0 (4)

By assuming symmetry in a plane normal to the nosetip

axis, the question becomes an interior Dirichlet problem, and
for a given set of boundary conditions, may be solved numeri-

cally using the method of Hess(5). If an analytic external pres-
sure distribution such as modified Newtonian is assumed for the

outer surface, then the linearity of Laplace's equation permits

the decoupling of the complex numerical calculations from the

physical boundary conditions. The physical solution is then
represented by summation of three separate sets of simple arti-

ficial boundary conditions.
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Goldet al!6) examinedthenosetipporousflow problem
for angleof attack. Theyreducedtheflow to Laplace'sequation
by ignoring inertial effectsandapproximatingthesurface-
pressuredistribution as ananalytic functionof themeridian
angleandthe pressuresonwindward,yaw, andleewardmerid-
ians. Theyutilized nondimensionalgraphicaldatafor fixed
angles of attack to determine coolant distributions.

Although the previous porous flow analyses for transpira-

tionnosetips are useful, they have several drawbacks:

1. Conservation of coolant mass is ignored inside the

porous matrix.

2. inertial effects are either approximated or ignored.

3. The nosetip analysis is restricted by the assumption

of symmetry.

4. The external pressure profiles must be described as

simple analytic functions.

5. The analyses assume constant coolant properties;
i.e., isothermal flow.

Curry and Cox(7) developed a set of complex equations

for the transient flow of a compressible gas through porous
media with heat transfer. They solved some two-dimensional

low-heating cases numerically. Although their method is gen-
eral, the numerical techniques are extremely difficult to extend

to three dimensions (for angle of attack).

This paper describes and demonstrates an analytical

model and numeric technique that does not have the shortcom-
ings of some of the previous work. The analysis

1. Is general with regard to geometry and boundary
conditions.

Z. Permits porous media heat transfer.

3. Is steady-state.

4. Is three-dimensional.

It is currently in use as an analytical and design tool for

the development of transpiration-cooled nosetips.

ANALYSIS

The object of this analysis is to provide a steady-state
solution for coolant distribution on the outer surface of a
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transpiration-cooled nosetip. Because typical operating

conditions may involve high stagnation pressures, the final

numerical relationships should provide for variable real-fluid

properties in terms of local temperature and pressure. There-

fore, it is necessary to solve for the temperature distribution

as well as the pressure distribution throughout the porous

matrix.

Basic Equations

The basic equation for porous-flow pressure drop is a

minor modification of Equation (3):

- gcVp = (c_ + 13m)-_" (5)

where the velocity vector has been replaced by the mass flux

vector, m.

In addition, there is the steady-state continuity equation

(_) • d7 = 0 (6)
S

and the steady-state porous-flow energy equation

-ke vat - (Vke) " (VT) + V" (H_n) = 0 (7)

The local effective thermal conductivity is that of the

coolant-infiltrated matrix, and is determined by the following

equation

where

ke = Ykc + (l-F) (1-_/) ks (8)

k = the local coolant conductivity
c

k = local conductivity of porous matrix parent material
S

_/ = void fraction of porous matrix

V = porous matrix tortuosity
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Assessment of Thermal Equilibrium

Equation (7) assumes that the fluid within a pore and the

surrounding pore material are in thermal equilibrium. This
assumption can be examined by the following approximations.
Figure 2 presents an idealized one-dimensional flow through a

matrix composed of circular pores. Assuming thermal equilib-
rium and uniform conductivity, Equation (7) reduces to

dT rh(H c - H o) (9)= "ke_r7-- c,

where H is the coolant storage enthalpy.
C,O

Examining the energy exchange within the pores, a balance

yields

dT _ NuD " (I0)
-rh Cpc dy pore Opore

while the pore density per unit area is

_Y
N = (ll)

_D 2
pore

Within a pore, the porous matrix-to-coolant temperature
differential is

T s . T c = __EPX& (12)
pore

Assuming purely laminar flow within a pore, the pore
heat-transfer coefficient is

4k
h - c (13)

pore D
pore

Combining Equations (9)through (13), the porous matrix-
to-coolant temperature differential is

C

T s - T = 0 0625 D 2 rlaZ Pcc " pore yk-------k--(Hc - Hc, o)
C e

(14)
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Approximating (H c - Hc, o) as Cpc (T - Tc, o), Equation (9)

can be integrated and combined with Equation (14) to yield the

local temperature differential in terms of the total enthalpy rise

of the coolant at the surface (a function of the surface pressure)

and the distance from the surface.

C

T 0.0625 D 2 2 Pc ( )" = " - - He, surf - He, o
Ts c pore m yk cke

Pc
_xp

e

(i5)

Equation (15) indicates that the maximum tempe rature
differential will occur at the surface where the coolant enthalpy

is a maximum, and that the differential will decrease in expo-

nential fashion below the surface.

As transpiration nosetip materials consist of sintered

metallic powders of various particle sizes, it is necessary to

characterize the pore distribution in order to assess the degree

of thermal inequilibrium. Figure 3 presents a pore size distri-

bution, based on mercury-intrusion porosimeter tests, for a

typical sintered stainless-steel nosetip material with a porosity

of 20.3 percent. The median pore size is 2.7 microns. For a

typical mass flux of liquid water of 20 lbm/ft2-sec at a surface

pressure of 200 atm, saturated liquid conditions on the surface

result in a porous matrix-to-coolant temperature differential of
50 °F. This decreases to 5°F 0.002 in. below the surface. It

can be readily seen that thermal equilibrium is a good assump-

tion for coolant flow within the porous matrix.

Viscous Dissipation

If a liquid coolant is caused to flow through a nosetip by

an imposed pressure differential, the coolant temperature will

rise because frictional shear forces transform the flow work

done on the coolant into thermal energy (i.e., viscous dissipa-

tion). If the coolant flow is assumed to be adiabatic, the local

temperature of the incompressible fluid in the porous matrix is

T = T
C C,O

P -P

+ c, o c (16)

P Cpc J
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whereJ is themechanicalequivalentof heat. For water, this
temperaturechangeamountsto about3°F for each1,000-psi
differential in pressure. In reality, theflowprocessis not
adiabatic, thecoolantis not incompressible,andsomekinetic
energyis impartedto the coolant. However,for water, the
latter twoeffectsare negligible. Additionally, if theflow rate
is highenoughto negatethe effectof heat conductionalongcool-
ant flowvectorswithin the porous matrix, as indicated by

Equation (9), then the assumption of adiabatic flow is appropri-

ate. Since liquid viscosity is usually a strong function of tem-

perature, viscous dissipation can have a significant effect on"

coolant pressure drop and flow distribution.

FINITE- DIFFERENCE MODE LING

The porous transpiration nosetip is segmented radially, axially,

and circumferentially so as to form a nodal network, as illus-

trated in Figure 4. The interracial areas bordering nodes and

the distances between centroids of adjacent nodes are evaluated

and utilized in conjunction with Equations (5) through (7) to

determine pressures and temperatures at node centroids and

the mass and energy flow either into or out of each nodal face.

To satisfy Equation (6), the interracial areas between nodes are

corrected for nonorthogonality by multiplying them by the unit

vector dot product between the normal to the face and the line

connecting the centroids of the adjacent nodes. Due to sym-

metry about the plane passing through the windward and leeward

meridians, only half the nosetip need be analyzed. Using the

numbering system of Figure 5, the finite-difference, Cartesian

equivalent of Equation (5) is

rn0,4 = gc W0,4 (P0 " P4 )

rh0, 5 = gc W0, 5 (P0 " P5 )

rh0,6 = gc W0, 6 (P0 " P6 )

where

(17)

W0, 4

2

+ _rh 0 + aP'4 + [3ria4]

0 J
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WO, 5

WO, 6

2
=

+ P{no _5 + _rh5]

+ J

Z
=

°_k_O+ 13rho _6 + prh6]
L0, 6 P0 +

(18)

The equivalent of Equation (6) is

rhl, oAl, o + rhz, oA2, o + rh3, 0A3, 0 = M in

Mout = rn0,4A0,4 + {no, 5A0, 5 + m0, 6A0, 6

(191

Substituting Equation (17) into Equation (19) and
rearranging,

P0

M.

in +

gc W0, 4A0, 4P4 + W0, 5A0, 5P5 + W0, 6A0, 6P6]

W0, 4A0, 4 + Wo, 5A0, 5 + Wo, 6A0, 6]

(Z,

Equation (Z0) presents a relationship for the nodal pres-

sure in terms of the net mass flow-in from three adjacent node

and the pressures in and geometric relationships with the other
three adjacent nodes.

The energy relationship, Equation (7), becomes

Ein = {nl,0H1A1,0 + {nz, 0HzAz, 0 + m3,0H3A3,0

+ RI,0(TI-T0) + RZ,0(T2-T0) + R3,0(T3"T0)

Eout = {n0,4HoA0,4 + rh0, 5HoA0, 5 +{n0, 6HoA0, 6

(Z

+ R0, 4 (T0-T4) + R0, 5 (T0"T5) + R0, 6 (T0-T6)
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where

RO,4 = 0.5Ao'4[k + k )
LO, 4 _ eo e4

0.5A0'5(k + k
R0,5 =

L0, 5 \ e0 e 5 / (22)

R0, 6 = 0. 5 L0 ' 6k e0 + ke6

Equation (21) can be rearranged to two forms:

TO = (Ein-rh0, 4HoA0, 4-rh0, 5HoA0, 5-rh0, 6HoA0, 6

+ R0, 4T4 + R0, 5T5 ÷ R0, 6 T6)/(R0, 4 + R0, 5

or

+ R0, 6) (23)

Ein- R0,4(T0-T4 ) - R0, 5(T0"T5 )" R0, 6(T0"T6 )
H 0 = • - • (24)

m0, 4A0, 4 + m0, 5A0, 5 + m0, 6A0, 6

whe r e

H 0 = f(T 0, P0 ) (25)

Equation (24) is used in the present analysis as it provides
greater stability in the numerical solution.

The Cartesian energy fluxes are

• + R0,4 (T O _ T4 )
e0,4 = *:n0'4H0 A0,4

60, 5 = {nO, 5H0 + R0,-5 (To - T5)
A0, 5
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e0, 6 = m0, 6H0 + R0,----_6
A0, 6 (TO " T6)

(26)

Boundary Conditions

As the inner and outer surfaces of the nosetip are repre-

sented by dummy nodes, essentially any prescribed distributions

of pressure, mass flux, temperature, or heat flux can be simu-

lated. Practical cases involve the following set of conditions:

I. Specified constant pressure over the inner surface

of the nosetip.

2. Specified constant coolant-supply temperature

(permits heat conduction at the inner surface of the

nosetip).

3. Specified pressure distribution over the outer surface

of the nosetip.

4. Local saturation temperature over the outer surface

corresponding to the prescribed pressure

distribution.

The fourth boundary condition is justified for liquids

because the surface shear encountered during reentry drasti-

cally reduces the coolant flow within the surface film by causing

liquid to be stripDed from the film and entrained in the gaseous

boundary layer.{8) In proportion, this reduces the film thick-

ness, and allows the porous matrix surface to approach the

local vaporization temperature of the coolant. This interpreta-

tion is supported by recent experimental data indicating surface

temperature essentially equal to the vaporization temperature

in regions covered by a liquid film.

Iteration Technique

Initial estimates of the pressure, mass flux, and temper-

ature and energy flux distributions are made within the nodal

matrix representing the nosetip. The mass and energy flow

from the nosetip cavity into the innermost node bordering the

nosetip axis of symmetry and centered on the windward merid-

ian is then calculated utilizing Equations (]7) and (26). This

provides an updated value for mass flow into that node; there-

fore, an updated nodal pressure and temperature can be calcu-

lated using Equations (20) and (24). With the updated pressure

and temperature, Equations (17) and (26) can then be utilized to

evaluate updated mass fluxes and energy fluxes from that node

into the three adjacent nodes in the outward radial direction,
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the downstream axial direction, and the circumferential
direction toward the leeward meridian.

This technique is then applied to successive nodes radi-

ally and outward until the surface is reached, whereupon a

transfer is made to the innermost node in the adjacent row in
the downstream axial direction. After a pass has been made
through the row of nodes furthest downstream, a transfer is

then made to the adjacent bank of nodes in the circumferential

direction and the sequence is repeated.

The basis for the technique is that the fixed temperature
and pressure boundary conditions cause a relaxation in the

matrix internal pressure and enthalpy and temperature distribu-

tions until conservation of coolant mass and energy is achieved.

Convergence is obtained when each nodal pressure and enthalpy
varies by less than a specified percentage from the value on the

previous pass through the network; i. e., for the i th iteration,

(P0, i - P0, i-1)/(P0, i-1) < convergence margin and
(H0, i - H0, i-1)/(H0, i-1) < convergence margin.

To maintain a uniform progression from the initialized
distributions to the final solution, the calculations must be

damped by weighting the updated nodal pressure and enthalpy as
determined by Equations (Z0) and (Z4) with the values on the

previous pass; i.e.,

PO, i damping factor x P0, calculated

+ (1.0-damping factor) x P0, i-1

and (Z7)

H0, i = damping factor x H0, calculated

+ (1.0-damping factor)x P0, i-1

where a decreasing damping factor results in increased

damping.

If the damping is inadequate, oscillations result in the
internal pressure and enthalpy fields, either slowing conver-

gence or causing the calculations to become unstable. The

amount of damping required appears to increase with both the
number of nodes in the mesh representing the nosetip and the
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variation between the initially estimated and final pressure and

enthalpy distributions. Subsequent numerical results that will
be shown utilize one-dimensional estimates for the initial dis-

tributions. It has also been determined that as the amount of

damping and number of nodes in the mesh increase, the con-

vergence margin must be decreased to maintain accuracy.

RESULTS

For the nosetip contour shown in Figure 1, with a radius

of ].0 in., a series of calculations was performed to determine

the material permeability that most efficiently distributed the

coolant around the nosetip surface. The optimum permeability

was found to be 5.45 x lO-ll in.2. Utilizing this permeability

and some typical reentry conditions, studies and comparisons

. were made utilizing a computerized model of the analyses. Sur.

face pressure distributions were obtained from a method-of-

characteristics solution of the inviscid shock layer.

Critical Parameter Requirements

Isothermal porous flow and 0-deg angle of attack were

selected in order to study the damping and convergence require

ments and the relative accuracy obtained by varying the finenes:

of the nosetip mesh. Figure 6 gives an approximate indication

of the amount of damping required to obtain convergence as a
function of mesh dimensions. Above the curve, the calculation,

tend to go unstable. As the curve is approached from below,

the oscillations take longer to damp out. Rapid convergence is

usually obtained with the damping factor set about 10 percent
below the critical value.

Since one-dimensional relationships are used to establish

the initial estimates of pressure and enthalpy field, other nose-

tip geometries that are not proportional may require damping

other than that shown in Figure 1. However, the trend with

increasing mesh fineness should hold. Multiplying the total

number of nodes by circumferentially segmenting the nosetip to

simulate angle of attack seems to have little or no effect on the

damping requirement. The radial and axial mesh fineness are

the primary factors.

Figure 7 illustrates the effect of convergence margin on

the accuracy of the calculated coolant distribution. Generally,

as the fineness of the mesh increases, the convergence margin

must decrease in order to maintain accuracy. The convergen¢

margin must also decrease with decreasing damping factor.

For the 5 by 25 mesh and 0.3 damping factor of Figure 7, the

solution has nearly converged for a margin of 0.0182. Conver

gence is complete at 0.005, although requiring twice the num-
ber of iterations.
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Figure 8 illustrates the effect of the mesh dimensions on

the predicted coolant distribution. The nosetip geometry and

multidimensional flow are handled adequately by even a very
coarse mesh. It should be noted, however, that these solutions
ignore temperature effects. Due to the coupling between the

pressure and temperature fields through fluid viscosity, fine
partitioning in the radial direction is desired for accuracy.

An_le-of-Attack Effects

Figure 9 presents the coolant distribution at the nosetip
surface for 20-deg angle of attack at high stagnation pressure.
As is evident, there is substantial cross flow from the windward

meridian toward the leeward meridian. It is clear that axisym-

metric analyses using only the windward meridian pressure dis-
tribution would provide misleading results.

Figure 10 presents windward meridian coolant distribution

for various angles of attack. The turbulent heating distribution
on a hemisphere usually peaks around 30 deg from the stagnation
point. In view of the altered coolant distribution at high angle of
attack, substantial increases in coolant supply pressure will be
required to provide adequate coolant flux as the heating profile
shifts over the nosetip surface.

Comparison with Two-Dimensional Approximation

Figure 11 presents a comparison of the results obtained
at two pressure levels using the present method with the method

of Timmer and Dirling, (4} who approximated inertial effects

and truncated their flow distribution at the tangency point. At
the high-pressure, high-flow condition, the present solution is

consistently lower. This is because Timmer and Dirling
approximated the quantity (a_z + _pv) as a constant in their solu-

tion by setting the velocity component equal to the average cool-
ant velocity at the nosetip outer surface. This underestimates
inertial effects, thus providing higher fluxes. The Timmer and

Dirling solution also does not have the upward trend at the tan-
gency point. This is due to the truncated solution. The solution

at the lower pressure level appears to agree fairly well.

Temperature Effects

The results presented are for isothermal porous flow
using the supply temperature of the coolant. Figure 12 shows

how isothermal results compare with solutions coupling the

porous flow enthalpy and pressure fields while accounting for
heat conduction and viscous dissipation, and the partially cou-

pled solution allowing only for viscous dissipation in the coolant.

At the high-pressure level, the isothermal solution provides

slightly lower fluxes while the viscous dissipation approximation
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agrees very well with the completely coupled solution. The

reason for the good agreement is that the high coolant flux

causes steep temperature gradients near the outer surface,

essentially isolating the main portion of the porous flow from

substantial heat conduction. The viscous dissipation solution

predicts even slightly higher flows in the stagnation region,

although this is due to greater streamline curvature for the fully

coupled solution.

For the lower pressure level, the fully coupled solution

provides substantially higher coolant fluxes than the isothermal

or viscous dissipation approximations. This is because heat

conduction has a greater effect on in-depth temperatures in the

porous flow; as indicated by Equation (9), the temperature gra-

dient along the porous flow vector should be proportional to

coolant flux. The isothermal and viscous dissipation solutions

coincide almost exactly, as very little flow work is done on the
coolant.

Therefore, if accurate porous flow estimates are required

over a wide range of reentry conditions, the fully coupled solu-
tion which accounts for both heat conduction and viscous dissi-

pation through the porous flow energy equation should be
utilized.

CONCLUSIONS

The conclusions are:

1. A fully coupled three-dimensional porous flow solu-

tion can be obtained by simultaneously solving the

pressure drop, mass continuity, and energy continu-

ity equations in finite-difference form using iteration

to relax the pressure and enthalpy fields.

Z. The small pore size of typical porous material per-

mits an energy model based on thermal equilibrium

between the mate rial and the coolant.

3. Damping is required to maintain stability in the com-

putational procedure.

4. As the fineness of the nosetip mesh increases, the

required amount of damping also increases.

5. Very coarse meshes can provide good accuracy,

particularly for conditions where heat conduction is

of secondary importance.

6, For high coolant fluxes, the importance of heat con-

duction is small and viscous dissipation dominates
thermal effects on coolant distribution.
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7. For low coolant fluxes, the importance of viscous

dissipation is small and heat conduction dominates
thermal effects on coolant distribution.
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Figure 1. Typical Transpiration-Cooled

Nosetip
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Figure 3. Typical Pore Size Distribution

Figure 4. Nosetip Nodal Representation
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Figure 5. Nodal Matrix Numbering System
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Figure 7. Effect of Nodal Convergence on Accuracy
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Figure 9. Nosetip Coolant Distribution at Angle of Attack
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Figure 10. Effect of Angle of Attack on Windward Meridian Coolant Distribution

Figure 11. Comparison of Coolant

D istributions
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